Digital Twin Information Retrieval System
Building a Digital Twin Information Retrieval System involves creating a system that can store, retrieve, and process data related to a digital twin—a virtual representation of a physical object or system. Below is a high-level Python implementation using FastAPI for the API backend, Elasticsearch for search, and SQLite for structured metadata storage.
System Components
1. FastAPI: API framework for handling requests.
2. Elasticsearch: Search engine for efficient retrieval.
3. SQLite: Stores metadata for the digital twin.
4. Pydantic: Ensures data validation.
Step 1: Install Dependencies
pip install fastapi uvicorn elasticsearch sqlite3 pydantic
Step 2: Set Up Elasticsearch Connection
from elasticsearch import Elasticsearch
# Initialize Elasticsearch client
es = Elasticsearch("http://localhost:9200") # Ensure Elasticsearch is running
# Define index mapping for digital twin documents
INDEX_NAME = "digital_twin"
mapping = {
"mappings": {
"properties": {
"id": {"type": "keyword"},
"name": {"type": "text"},
"description": {"type": "text"},
"metadata": {"type": "nested"},
}
}
}
# Create index if it doesn't exist
if not es.indices.exists(index=INDEX_NAME):
es.indices.create(index=INDEX_NAME, body=mapping)
Step 3: Set Up SQLite Database for Metadata
import sqlite3
conn = sqlite3.connect("digital_twin.db")
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS twins (
id TEXT PRIMARY KEY,
name TEXT,
description TEXT,
metadata TEXT
)
""")
conn.commit()
Step 4: FastAPI API Implementation
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import json
import uuid
app = FastAPI()
class DigitalTwin(BaseModel):
name: str
description: str
metadata: dict
@app.post("/add_twin/")
def add_twin(twin: DigitalTwin):
twin_id = str(uuid.uuid4()) # Generate unique ID
twin_dict = twin.dict()
# Store in Elasticsearch
es.index(index=INDEX_NAME, id=twin_id, body=twin_dict)
# Store in SQLite
cursor.execute("INSERT INTO twins (id, name, description, metadata) VALUES (?, ?, ?, ?)",
(twin_id, twin.name, twin.description, json.dumps(twin.metadata)))
conn.commit()
return {"id": twin_id, "message": "Digital twin added successfully"}
@app.get("/search_twin/")
def search_twin(query: str):
search_body = {"query": {"multi_match": {"query": query, "fields": ["name", "description", "metadata"]}}}
results = es.search(index=INDEX_NAME, body=search_body)
return {"results": results["hits"]["hits"]}
@app.get("/get_twin/{twin_id}")
def get_twin(twin_id: str):
cursor.execute("SELECT * FROM twins WHERE id=?", (twin_id,))
twin_data = cursor.fetchone()
if not twin_data:
raise HTTPException(status_code=404, detail="Digital twin not found")
return {
"id": twin_data[0],
"name": twin_data[1],
"description": twin_data[2],
"metadata": json.loads(twin_data[3])
}
Step 5: Running the System
Save the script and run it:
uvicorn script_name:app --reload
Access endpoints:
• POST /add_twin/ → Add a digital twin
• GET /search_twin/?query=xyz → Search twins by text
• GET /get_twin/{twin_id} → Retrieve twin by ID
Enhancements
• Integrate Kafka for real-time updates.
• Use GraphQL for flexible querying.
• Implement AI-driven analytics on the retrieved data.
Would you like me to modify this for a specific use case?
Comments
Post a Comment